Пластинчатый теплообменник устройство и принцип работы

На этой странице предлагаем ознакомиться с полной информацией по теме: "Пластинчатый теплообменник устройство и принцип работы". Здесь собраны и структурированы тематические данные. При возникновении вопросов можно обратиться к дежурному юристу.

Устройство пластинчатого теплообменника

Пластинчатый теплообменник представляет собой специфическое устройство, состоящее из металлических пластин с гофрированной поверхностью, стянутых в один пакет. Для изготовления данных элементов могут использоваться сталь, медь, титан и прочие материалы. Наличие нагреваемых пластин обеспечивает передачу теплоты в холодную среду. Таким образом, осуществляется естественное перемещение слоев.

Конструкция теплообменников

Для того чтобы использование теплообменника было максимально эффективным, а размер при этом оставался довольно компактным, его конструкция предусматривает наличие небольшого количества простых элементов:

  • неподвижная плита с размещенными на ней патрубками;
  • задняя прижимная плита;
  • пластины, дополненные специальными прокладками;
  • направляющие;
  • задняя стойка.

Крепление отдельных деталей производится при помощи резьбовых шпилек подходящего размера.

Размещение пластин происходит таким образом, что они разворачиваются одна за другой на 180º. За счет этого в процессе стягивания подготовленного пакета обеспечивается образование каналов, предназначенных для свободного протекания жидкости.

Основные особенности конструкции

Для изготовления пластин применяются сплавы, характеризующиеся стойкостью к образованию коррозии. Это обеспечивает им должный уровень надежности и гарантирует долговечность.

В собранном виде теплообменник отличается довольно плотным размещением пластин. Благодаря этому образовываются щелевые каналы. Их герметичность достигается за счет применения дополнительных контурных прокладок из резины.

На всех пластинах присутствуют отверстия в количестве четырех штук. Два из них обеспечивают нагревание сред. Оставшаяся пара изолируется. Данная мера исключает недопустимое смешивание жидкостей.

Особенностью работы пластинчатых теплообменников являются довольно небольшие гидравлические сопротивления. Кроме того, следует отметить тот факт, что на поверхности пластин практически не образуется накипь.

При условии размещения дополнительных патрубков на прижимной плите, реализуется возможность осуществления многократного теплообмена сред. Подобный подход актуален в ситуациях, когда речь идет о незначительной разнице в температуре двух сред, а также при условии ощутимого отличия в их расходе.

Принцип работы теплообменника

Во время осуществления теплообмена движение жидкостей происходит по направлению друг к другу. Наличие специального элемента из стали или дополнительного резинового уплотнения позволяет предотвратить смешение жидкостей в тех местах, где существует возможность протекания.

В зависимости от того, в каких именно условиях планируется эксплуатация конкретного теплообменника, количество пластин, а также способ обработки их поверхности, могут отличаться. Это относится и к применяемым расходным материалам.

Так, производители предлагают не только изделия из доступной нержавеющей стали, но и модели, выполненные из современных сплавов, устойчивые к длительному воздействию агрессивных сред.

Существующие виды пластинчатых теплообменников

На сегодняшний день существуют следующие пластинчатые теплообменники:

Они отличаются различными эксплуатационными характеристиками и определенными конструктивными особенностями. Широкое разнообразие моделей позволяет подобрать именно тот вариант, который будет лучше всего подходить для применения в конкретных условиях и обеспечит получение оптимального результата. Изготовление теплообменников осуществляется в соответствии с установленными требованиями и стандартами качества.

Источник: http://promdevelop.ru/rabota-plastinchatogo-teploobmennika/

Пластинчатый теплообменник: устройство и особенности

Тепло в наши дома поступает из котельной либо от центрального теплопункта, в котором холодная вода нагревается от теплообменника, выполняющего важную роль в системах отопления и горячего водоснабжения. В индивидуальных домах теплообменник пластинчатый и вовсе считается центральным элементом системы, потому как нагревание теплоносителя выполняется именно в нем. Такие приборы могут различаться конструкцией и видом, но принцип действия — во многом общий для всех типов.

Конструкция пластинчатого теплообменника

Назначение теплообменников всех видов — преобразовывать непрогретую жидкостную среду в нагретую (и наоборот).

Пластинчатые теплообменники обладают разборной конструкцией, состоящей из таких частей:

  • недвижимой плиты;
  • подвижной плиты;
  • комплекта пластин;
  • деталей крепежа, объединяющих две плиты в единую раму;
  • нижнего и верхнего направляющего элемента круглой формы.

Конструкция пластинчатого теплообменника

Размеры рам различных моделей могут существенно отличаться. Они зависят от мощности и тепловой отдачи подогревателя — с большим числом пластин увеличивается продуктивность прибора и, соответственно, возрастают его габариты и масса.

Пластины теплообменника

Конструкция пластинчатого теплообменника зависит от модификации устройства и может содержать различное количество пластин с закрепленными на них прокладками, герметизирующими каналы с протекающим по ним теплоносителем. Для достижения требуемой по условию герметичности плотности прилегания пар соседних прокладок одной к другой достаточно скрепления этих двух пластин с неподвижной плитой.

Нагрузки, действующие на аппарат, прилагаются главным образом на прокладки и пластины. Крепежные детали и рама, по сути, представляют собой корпуса прибора.

Рельефная окантовка пластин при сжатии гарантирует надежное крепление и дает конструкции теплообменника требуемую жесткость и прочность.

Конструкция пластин теплообменника

Прокладки закрепляются на пластинах посредством клипсового замка. Следует отметить, что прокладки при их зажатии самоцентрируются по направляющей. Утечка теплоносителя предотвращается окантовкой обшлага, создающей дополнительный барьер.

Для теплообменников производятся два типа пластин:

  • с термически мягким рифлением;
  • с термически жестким рифлением.

В деталях с мягким рифлением каналы устроены под углом 30°. Такой вид пластин отличается повышенной теплопроводимостью, но меньшей устойчивостью к давлению теплоносителя.

В частях с термически жестким рифлением при устройстве канавок соблюден угол в 60°. Этим пластинам не свойственна высокая теплопроводность, их преимущество — способность переносить высокое давление в системе.

Достижение оптимального режима теплоотдачи возможно при комбинировании пластин в теплообменнике. При этом необходимо учесть, что для эффективной работы прибора нужно, чтобы он функционировал в режиме турбулентности — теплоноситель должен перемещаться по каналам без каких-либо помех. К слову, кожухотрубный теплообменник, в котором реализована конструктивная схема «труба в трубе» — с ламинарным режимом течения жидкости.

Какая от этого выгода? При идентичных теплотехнических параметрах пластинчатый прибор обладает меньшими в несколько раз размерами.

Прокладки

К устройствам с пластинами предъявляются очень жесткие требования относительно герметичности, в связи с чем в последнее время прокладки стали выпускать из полимеров. Этиленпропилен, например, способен без проблем работать в условиях высоких температур — и воды, и пара. Но очень быстро разрушается в среде с содержанием масел и жиров.

Прикрепление прокладок к пластинам выполняется преимущественно клипсовым соединением, реже — посредством клея.

Принцип действия

Принцип работы теплообменника нельзя назвать слишком простым. Пластины развернуты одна к другой под 180°. Как правило, в одном пакете устанавливается по две пары пластин, создающих два коллекторных контура: ввода и отведения теплоносителя. При этом следует учесть, что пара расположенных с края элементов в тепловом процессе не задействуются.

Читайте так же:  Банки рефинансирующие автокредит

На сегодняшний день производится несколько вариантов исполнения теплообменных приборов, устройство и принцип работы которых различны:

  • одноходовые;
  • многоходовые;
  • двухконтурные.

Принцип работы прибора

Как работает одноходовой аппарат? Циркуляция жидкости в нем осуществляется перманентно по всей площади в едином направлении. Кроме того, выполняется и противоток теплоносителей.

Аппараты многоходовые используются только при не слишком большой разнице между температурой подающейся жидкости и температурой обратки. Ток жидкостей при этом будет осуществляться в различных направлениях.

Двухконтурные теплообменники состоят из двух независимых контуров. При условии постоянной корректировки подачи тепла применение такого оборудования наиболее целесообразно.

Сфера применения

Существует несколько видов теплообменников, каждый из которых имеет свой принцип работы и специфику конструкции:

Прибор разборной конструкции часто используется в теплосетях, подведенных к жилым домам и сооружениям различного назначения, в бассейнах, климатических установках и холодильниках, системах ГВС, теплопунктах.

Вид сварного пластинчатого агрегата

Теплообменники паяного вида нашли свое применение в:

  • сетях вентиляции и системах кондиционирования;
  • холодильных установках;
  • турбинных приборах и компрессорах;
  • промышленных агрегатах различного назначения.

Приборы сварные и полусварные используются в:

  • химической и фармацевтической отраслях;
  • сетях вентиляции и климат-системах;
  • пищевой промышленности;
  • тепловых насосах;
  • в системах ГВС и отопления;
  • агрегатах для охлаждения оборудования различного назначения;
  • системах рекуперации.

Самым распространенным типом теплообменников, применяющихся в индивидуальных домовладениях, считается паяный, обеспечивающий нагрев или охлаждение воды.

Технические характеристики

Прокладки и пластины, как основные элементы теплообменных устройств, изготавливаются из различных по своим свойствам и характеристикам материалов. При выборе в пользу той или иной модели решающую роль играет назначение теплообменника и область его использования.

Если остановиться сугубо на системах ГВС и теплоснабжения, то в этой области больше распространены пластины, изготовленные из нержавеющей стали, а пластичные прокладки — из особой резины EPDM либо NBR. Установка пластин из нержавейки позволяет работать с теплоносителем, прогретым до 110°С, в другом же случае устройство пластинчатого теплообменника позволяет нагревать жидкость до 170°С.

Фрагмент пластины теплообменника

При использовании теплообменников в промышленном производстве и задействовании их в технологических процессах с воздействием щелочей, кислот, масел и иных агрессивных веществ, применяются пластины из никеля, титана и других сплавов. В таких случаях устанавливаются фторкаучуковые или асбестовые прокладки.

Подбор теплообменника производится согласно расчетам, выполняемым при помощи специализированных программ. При расчетах учитываются:

  • первоначальная температура теплоносителя;
  • относительный расход прогреваемой жидкости;
  • требуемая температура нагревания;
  • расход теплоносителя.

В роли нагревающей среды, протекающей через пластинчатый испаритель, может использоваться подогретая до температуры 95 или 115°С вода, а также пар температурой до 180°С. Вид теплоносителя подбирается в зависимости от вида применяемого котла и оборудования. Размеры и количество пластин подбираются с таким расчетом, чтобы в результате получить воду с температурой, соответствующей установленным стандартам — не более 70°С.

Стоит отметить, что основной технической характеристикой, являющейся также и главным преимуществом, считаются небольшие размеры устройства и способность обеспечить достаточно большой расход.

Вариативность возможных расходов и площадей обмена у пластинчатых приборов достаточно высока. Самые компактные из них, например, от бренда Alfa Laval, обладают площадью поверхности до 1 м2, обеспечивая протекание объема жидкости до 0,2 м3/час. Самые же крупные теплообменники имеют площадь порядка 2000 м2 и расход, превышающий 3600 м3/час.

Обвязка теплообменника

Теплообменные установки преимущественно монтируются в отдельных котельных, обслуживающих многоквартирные дома, индивидуальные постройки, предприятиях промышленности, теплопунктах центральных теплосетей.

Относительно небольшие размеры и масса устройств позволяют выполнить монтаж достаточно быстро, хотя некоторые обладающие большой мощностью модели требуют постановки на фундамент.

При установке прибора необходимо соблюсти основной принцип: заливание фундаментных болтов, посредством которых теплообменник надежно фиксируется, осуществляется во всех случаях. Схема обвязки непременно предусматривает подведение теплоносителя к расположенному сверху патрубку, а к размещенному снизу штуцеру выполняется подключение обратной магистрали. Подача нагретой воды подсоединяется наоборот — к нижнему патрубку, а выход ее — к верхнему.

Пример внедрения теплообменников

В подающем теплоноситель контуре необходима установка циркуляционного насоса. Кроме основного обязательно ставится и равный ему по мощности резервный насос.

Если в ГВС предусмотрена магистраль обратного движения жидкости, то схема и принцип работы пластинчатого теплообменника несколько изменяется. Нагревшаяся вода, подающаяся по замкнутому контуру, смешивается с холодной из водопровода, и лишь затем получившаяся смесь приходит в теплообменник. Корректировка температуры на выходе осуществляется посредством электронного блока, управляющего клапаном подающей теплоноситель магистрали.

При двухступенчатой схеме используется тепловая энергия обратной магистрали, что позволяет наиболее рационально использовать имеющееся тепло и снять с котла лишнюю нагрузку.

В каждой из рассмотренных систем на входе в теплообменник обязательно должны быть установлены фильтры, благодаря которым удается избежать загрязнения системы и продлить срок ее службы.

Итоги по теме

При всех прочих преимуществах современные пластинчатые теплообменники не смогли опередить устаревшие кожухотрубчатые по единственному, но очень важному критерию. При обеспечении значительного расхода, пластинчатые приборы немного не догревают воду. Такой недостаток легко устраняется созданием небольшого запаса при подборе количества пластин и расчете их площади.

Источник: http://profiteplo.com/sistemy-otopleniya/95-plastinchatyj-teploobmennik-dlya-otopleniya.html

Новоалтайский механический завод

Каталог

Навигация

Облако тегов

Пластинчатый теплообменник. Устройство теплообменника и принцип его работы

Пластинчатый теплообменник представляет собой особое техническое устройство, посредством которого происходит теплообмен между горячим и холодным теплоносителем. В качестве теплоносителей могут выступать различные жидкости, газ, водяной пар.

Конструктивной особенностью пластинчатых теплообменников является пакет из гофрированных металлических пластин, соединенных друг с другом и повернутых одна относительно другой на 1800. На теплообменнике пластины устанавливаются в раму. Гофрированные пластины, помимо металла, могут изготавливаться из меди, нержавейки, графита. Специфическая поверхность теплообменника обеспечивает сильную турбулентность теплоносителей при движении их по трубам.

Благодаря высокой турбулентности теплоносителей, происходит увеличение коэффициента теплопередачи. При соединении между собой, гофрированные пластины превращаются в две изолированные друг от друга металлической стеной и прокладками, герметичные системы. По одной системе проходит горячий теплоноситель, по другой – холодный теплоноситель, в результате происходит обмен теплом между средами.

Гофрированные пластины собирают в пакет крест-накрест, создавая симметричную сетку пересечения, подобная конструкция придает необходимую жесткость этой конструкции.

Каждая такая пластина снабжена уплотняющей прокладкой, которая обеспечивает высокую герметичность протоков в рабочем режиме, при прохождении по ним теплоносителей. Система прокладок, установленных на теплообменнике, обеспечивает бесперебойное прохождение одного из теплоносителей по трубам, другой теплоноситель протекает противотоком относительно первого. Благодаря конструктивным особенностям и особой конфигурации уплотнительных прокладок полностью исключается смешивание обоих теплоносителей друг с другом.

Читайте так же:  Полиция сообщает на работу

Сочетание усиленной турбулентности теплоносителя вместе с правильным сочетанием размера пластинчатого теплообменника с объемом проходящих теплоносителей позволяет обеспечить высокий коэффициент теплопередачи.

Пластинчатый теплообменник представляет собой теплообменник поверхностного типа, где происходит передача тепла между средами (нагревающей и нагреваемой), через металлическую стенку, которая называется поверхностью теплообмена. Пластинчатый теплообменник состоит из тонких гофрированных штампованных пластин.
Используются эти аппараты в качестве нагревателей или охладителей в различных технологических процессах газовой, нефтеперерабатывающей, химической и других промышленных отраслях.
Пластинчатый теплообменник состоит из таких составляющих, как неподвижная плита, оснащенная присоединительными патрубками, пластины для теплообмена с уплотнительной прокладкой, задняя стойка и комплект резьбовых шпилек. Задняя прижимная плита и верхняя и нижняя направляющие образуют раму аппарата, на которую устанавливаются пластины. Благодаря такому устройству удается добиться эффективной компоновки теплообменной поверхности, а значит, произвести аппарат небольших габаритов.

Схема теплообмена.

Типы пластинчатых теплообменников в зависимости от схемы движения теплоносителей.

Пластинчатые теплообменники могут быть одноходовыми и многоходовыми.

В одноходовых пластинчатых теплообменниках теплоноситель постоянно движется по одинаковой траектории, проходя всю длину теплообменника. Главная отличительная черта аппарата такого типа состоит в абсолютном противотоке теплоносителей.
Многоходовые пластинчатые теплообменники рекомендуют применять тогда, когда разница в температурах двух теплоносителей необходима несущественная. Патрубки в таком аппарате располагаются и на передней неподвижной, и на нажимной торцевой плитах. В пластинчатом теплообменнике такого типа потоки теплоносителей изменяют свое направление в одном ходу или нескольких.
Многоходовая схема предполагает наличие только одного выходного и входного патрубков. Все стороны должны быть независимы. Каждый канал хладагента должен быть окружен водными каналами.
Многоконтурные пластинчатые теплообменники оснащены двумя независимыми контурами на одной из сторон. Используются они тогда, когда необходимо, чтобы среда прогревалась или охлаждалась в два этапа. Также они применяются, если нужно регулировать тепловую мощность.

Видео (кликните для воспроизведения).

Виды пластинчатых теплообменников.

Основные параметры пластинчатых теплообменников.

Изготавливаются пластины теплообменников из тонколистовой стали. В аппарате может находиться как очень мало пластин (но обычно не меньше 7), так и огромное их количество. Температура носителя в пластине не может быть выше 150 градусов, а давление – 10 кгс/см2. Количество пропускаемой жидкости за час может достигать 1 или 2000 м3. Площадь поверхности теплообмена у одного аппарата бывает разной и зависит от того, какое он будет иметь назначение (5-2100 м2).

Область применения пластинчатых теплообменников.

Пластинчатые теплообменники применяют в самых разных сферах:

  • теплоснабжение (центральное отопление, нагрев очищенной воды, подогрев бассейна, полов и др.);
  • машиностроение и металлургия (охлаждение станков, машинных охладителей и др.);
  • судостроение (центральное охлаждение, подогрев морской воды и др.);
  • пищевая промышленность (пастеризационные установки, охлаждение жирных кислот и др.);
  • автомобильная промышленность (центральное охлаждение и т.п.)
  • энергетика (напр., маслоохаладители);
  • нефтяная промышленность (нагрев/охлаждение нефтепродуктов в технологическом процессе и др.);
  • и мн. др.

Источник: http://nmzaltay.ru/page/page77.html

Пластинчатый теплообменник – особенности и принцип работы

Под пластинчатым теплообменником подразумевается специальный прибор, который охлаждает или подогревает воздух в одном конкретно взятом помещении, а не во всех комнатах дома. Энергоносителями для такого оборудования могут быть как жидкие, так и газообразные виды топлива.

Основной составляющей устройства является пластина из гофрированной стали. В большинстве случаев она изготовлена из нержавейки, но иногда используют и другие виды металла, всё будет зависеть от сферы применения прибора. Конструктивно пластины соединены друг с другом и установлены в специальной раме.

Благодаря высокой турбулентности теплоносителя увеличивается степень теплоотдачи. Пластины теплообменника разделены прокладками из специальной резины. За счёт плотного прилегания пластин друг к другу теплообменник имеет небольшие размеры. Основным предназначением прокладок в устройстве пластинчатого теплообменника является бесперебойное обеспечение протекания жидкости по трубам. За счёт такой особенности прибора оба теплоносителя не смешиваются между собой.

Основные разновидности пластинчатых теплообменников

Учитывая особенности конструкции разных видов теплообменников, их можно условно подразделить на следующие виды:

  • Одноходовой теплообменник, нагревает жидкость, двигаясь постоянно в одном направлении. Такой аппарат обладает противотоком теплоносителей.
  • Многоходовой пластинчатый прибор применяется только при относительно невысокой температурной разнице теплоносителей. При этом движение жидкостей происходит в двух направлениях — прямом и обратном.
  • Многоконтурный агрегат обустраивается двумя независимыми контурами, которые располагаются, с одной стороны прибора. Такой пластинчатый теплообменник считается лучшим, если необходима постоянная регулировка мощности выработки тепла.

Для изготовления пластин теплообменника используют только высококачественные материалы. При этом конструкция прибора оснащается 5 или 50 отдельными элементами, количество которых зависит от мощности агрегата. Такие теплообменники могут дополняться пластинами, закрепляемыми непосредственно на раме, что позволяет изменять мощностные показатели прибора. Качественный теплообменник выдерживает изменение температуры теплоносителя в диапазоне от -25° C до +200° C.

Сфера использования пластинчатого устройства

Сфера применения пластичного теплообменника достаточно обширна. Они используются практически везде, где это необходимо. Поэтому перечислять все отрасли, где применяется устройство бессмысленно и далее будут приведены только некоторые из них:

  • в качестве централизованной системы отопления, для подачи тёплого водоснабжения, нагрева жидкости в бассейнах и т. д;
  • пластинчатый теплообменник нашёл широкое применение в машиностроительной и металлургической сфере для охлаждения разных промышленных агрегатов;
  • в судостроительной сфере для подогрева морской воды на корабле или охлаждения системы отвечающей за плавучесть;
  • очень часто теплообменник используется в промышленности, выпускающей, пищевую продукцию, где постоянно необходимо охлаждать какие-либо продукты;
  • в нефтеперерабатывающей индустрии для охлаждения нефтепродуктов.

Такую популярность агрегат получил благодаря своему качеству работы и значительному эксплуатационному ресурсу, который достигается за счёт использования штампованных пластин. А учитывая то что, они изготавливаются из нержавеющей стали, то им, не страшна, коррозия и другие химические процессы. Благодаря тому, что пластинчатый теплообменник является универсальным устройством для подогрева и охлаждения, сложно переоценить его использование в любой сфере.

Конструктивные особенности теплообменника

Конструктивно теплообменник является сборным агрегатом, состоящим, из следующих элементов:

  • неподвижная плита;
  • подвижная плита;
  • комплект пластин из нержавейки;
  • элементы крепежа для стяжки плит образующих основную раму;
  • два направляющих в нижней и верхней части агрегата по форме напоминающих круглый прут.
Читайте так же:  Какой должна быть сумма алиментов

Габариты рамы могут сильно отличаться в зависимости от мощности агрегата. Более мощные модели оснащаются большим количеством пластин для обеспечения качественной производительности прибора. Естественно, это влияет на размеры и общую массу пластинчатого теплообменника.

Обеспечение герметизации протоков для циркуляции жидкости достигается благодаря прокладкам из специальной резины. Необходимая степень плотности прилегания прокладок, размещённых, на пластинах, установленных по соседству, обеспечивается стягиванием неподвижной и подвижной плиты.

Если подойди к рассмотрению теплообменника со стороны воздействующих на агрегат нагрузок, то основное их действие направлено на пластины и резиновые прокладки. В свою очередь, рама и стяжки — это просто корпус прибора. Поэтому основной теплообменника являются пластинчатые элементы.

Особенности и характеристики пластин

Как уже неоднократно упоминалось, для изготовления пластин используется только нержавеющая сталь — материал, устойчивый к коррозии и высоким температурам. Технологией изготовления пластинчатых элементов теплообменника является штамповка, которая позволяет изготавливать плиты сложной конфигурации. Плюс ко всему это позволяет сохранить основные характеристики материала.

Также важно учитывать, что для изготовления пластин подойдёт не любая нержавеющая сталь. Используют только определённые марки. Сами же плиты обладают необычной формой. Поверх ровной поверхности проделаны специальные бороздки, располагающиеся как в симметричном, так и хаотичном порядке. Благодаря такой рифлёной поверхности увеличивается площадь отбора тепла и обеспечивается более равномерное распределение теплоносителей.

Крепление резиновых прокладок выполняется непосредственно на пластинах при помощи специальных клипс. Плюс ко всему прокладки имеют самоцентрирующуюся конструкцию, что очень удобно, а благодаря манжетам создаётся дополнительный барьер, помогающий, удерживать теплоноситель. Если рассматривать типы выпускаемых производителями пластин, то их существует всего два.

  1. Элемент, имеющий термически жёсткое рифление. Канавки на такой плите выполнены под углом в 30 градусов. Они обладают высокими теплопроводящими характеристиками, но не выдерживают слишком большого давления при циркуляции теплоносителя.
  2. Пластина, обладающая термически мягкой рифленостью, выполненной, под углом в 60 градусов. Такой элемент обладает низкой теплопроводностью, но легко противостоит высокому давлению теплоносителя циркулирующего внутри агрегата.

Благодаря комбинации разных типов пластин внутри основного корпуса прибора можно добиться оптимального варианта теплоотдачи всей конструкции в целом. Однако для эффективной работы пластинчатого теплообменника важно чтобы теплоноситель циркулировал в турбулентном состоянии. Проще говоря, жидкость внутри агрегата при максимальной теплоотдаче должна протекать беспрепятственно.

На чём основан принцип работы теплообменника?

Принципиальной особенностью функционирования пластинчатых теплообменников является температурный обмен между соседними рабочими средами. В последние дни такое оборудование всё чаще используется в коммунальных организациях, при создании индивидуального отопления, в сфере энергетики и других индустриях.

Такая популярность в первую очередь обусловлена малыми габаритами прибора при максимальной эффективности работы, которая была достигнута за счёт быстрой вихревой циркуляции теплоносителей в контуре. Также благодаря такому эффекту на нагревательных элементах не осаживаются отложения и не образуется накипь.

Основой конструкции прибора являются тончайшие рифлёные пластины из нержавеющей стали, которые стягиваются в пакет. Принцип работы пластинчатых теплообменников основывается на передаче тепловой энергии от горячего теплоносителя к холодному, которые циркулируют внутри контура во встречном направлении. При этом циркулирующие среды не смешиваются, так как в месте их соприкосновения установлены резиновые прокладки из термостойкого материала.

Положительные стороны прибора

Пластинчатый теплообменник является новым и универсальным прибором для обогрева и охлаждения помещений. При этом он во многом, превосходит конкурирующие изделия благодаря своей компактности и высокой производительности. Помимо своих размеров и высокой теплоотдачи такой прибор обладает множеством других положительных характеристик:

  • возможность монтажа и демонтажа устройства непосредственно на месте где будет эксплуатироваться пластинчатый теплообменник;
  • установка в тепловых системах без должной водоподготовки;
  • достаточно незначительный вес;
  • возможность быстро и легко изменять тепловую мощность путём дополнительной установки пластин;
  • гибкая регулировка температурного режима в системе.

Если было решено приобрести пластинчатый теплообменник и поближе ознакомиться с принципом его функционирования, то не стоит откладывать это в долгий ящик. Такое универсальное устройство поможет не только нагреть любое помещение, а, и в нужный момент охладить его.

Источник: http://kotel.guru/truby/teploakkumulyatory/plastinchatyy-teploobmennik-osobennosti-i-princip-raboty.html

Виды теплообменников, их устройство и принцип работы

Главной целью теплообменника является передача тепла от носителя (вещества с высоким показателем температуры) до холодного объекта. Примером теплоносителя может являться газ, жидкость и пар. Сегодня на прилавках магазинах можно наблюдать большое разнообразие теплообменников. Каждый из них имеет свои особенности: принцип действия, внешний вид, разные показатели температуры и т. д. Кожухотрубные теплообменники, принцип работы которых отличается от пластинчатых приборов, имеют совершенно иные параметры, чем аналог, но другого вида. Для того чтобы сделать правильный выбор, необходимо изучить подробности агрегатов и понять их характеристики.

Принцип работы теплообменника

Современный теплообменник может работать по трём основным процессам:

  • конвекция;
  • тепловое излучение;
  • теплопроводность.

Классификация приборов происходит по тому, каким из способов тепло поставляется к холодному объекту, а именно:

  • смесительный способ;
  • теплообменный способ.

В их принципе работы, устройстве и виде заключается основная разница. Именно потому важно, прежде чем совершить покупку теплообменника, изучить все имеющиеся виды в продаже. Лучшим вариантом описания принципа действия изделия является пример с поверхностными агрегатами. Они считаются одними из самых распространённых конструкций среди пользователей. Внутри этого прибора сосредоточены чувствительные элементы, которые нагреваются, передавая тепло холодному объекту.

Если взять смесительный агрегат, то он совмещает в себе взаимодействие воздуха и жидкости, выдавая в итоговом результате высокий уровень коэффициента полезного действия. Тем самым — это устройство становится лёгким по изготовлению, с высокой скоростью получения нужного результата. Только при смешивании двух различных сред можно достичь подобных результатов.

Каждый теплообменник имеет и набор устройств, которые работают по особому принципу. Их разделяют на два вида:

В первом виде подразумевается использование двух разных жидкостей. Они взаимодействуют между собой с помощью разделительной стенки. В процессе обмена температурами, поток в обоих вариантах остаётся прежним и не изменяется. Во втором виде теплообменников прослеживается наличие рабочего элемента, который в то же время является и источником поставляемого тепла и своеобразным зарядным устройством. При контакте с жидкостями, элемент нагревается, издавая в пространство необходимое тепло. В этом случае, поток тепла может изменить своё направление.

Виды теплообменников

На сегодняшний день имеется несколько видов теплообменников:

  • погружные;
  • пластинчатые;
  • элементные;
  • витые;
  • графитовые;
  • спиральные;
  • двухтрубные;
  • кожухотрубные.
Читайте так же:  Образец на алименты

Погружной теплообменник

В качестве чувствительного элемента в этом приборе выступает цилиндрической формы змеевик. Он размещён в сосуде, который заполнен жидкостью. Подобная конструкция существенно снижает время необходимое на отдачу тепла прибором. Такого вида устройство считается одним из лучших по эффективным показателям работы прибором. Применяется исключительно в местах, где дозволено механическое включение и стадия закипания.

Пластинчатый теплообменник

Достоинства этого прибора можно перечислять долгое время. Это и лёгкость сборки, и простота чистки, и минимальное сопротивление гидравлики. Состав этого вида приборов подразумевает соединение крепёжных болтов, концевых камер, рамы и рабочей пластины. Последние элементы разделены специальными резиновыми прокладками. Их изготавливают из специальной стали. Технология монтажа пластин подразумевает установку резиновой прокладки без использования клеевых смесей, тем не менее позволяющая плотно прилегать отдельным частям друг к другу. Схема подачи рабочей среды может иметь три варианта: прямоточную, смешанную и противоточную.

Элементный теплообменник

Особенностью строения этого прибора является соединение частей единую систему. Если рассматривать принцип их работы, то он во многом схож с работой кожухотрубных теплообменников. Схема подачи рабочей среды работает только противоточно. Этот агрегат сочетает в себе небольшое количество труб.

Витой теплообменник

Чувствительный элемент этого прибора имеет название концентрического змеевика. Они закрепляются на специальных головках, получая защиту от кожуха. Используется схема с двумя жидкостями, один вид которой заполняет имеющиеся трубки, а другой располагается в пространстве между ними. Считается, что этот вид агрегата прекрасно переносит различные перепады давления и обладает высоким показателем стойкости к износу.

Графитовый теплообменник

Его устройство позволяет защитить конструкцию от воздействия коррозии. Также этот прибор отлично проводит тепло. Состоит агрегат из блоков, имеющих форму прямоугольника и цилиндра. Движение рабочей жидкости осуществляется по перекрёстной схеме. В составе теплообменника можно увидеть металлический корпус, трубки, решётки и крышки.

Спиральный теплообменник

Принцип работы этого прибора заключается в использовании металлических листов. Их скручивают в спираль и закрепляют на особом механизме под названием крен. Для полноценной работы необходимо обеспечить герметизацию теплообменника. Её достигают при помощи сваривания отдельных её частей или укладкой прокладки. Такие приборы довольно сложно создавать, обслуживать и ремонтировать. Запрещается использовать устройство в системе с давлением выше 10 кгс/см 2 . Эти недостатки успешно заменяет небольшой вес и размер прибора, а также его высокий показатель эффективности.

Двухтрубный теплообменник

Главными основными частями этих приборов являются трубы разного диаметра. В качестве рабочей среды используется жидкость и газ. Теплообменник используется в местах, где существуют большие перепады давления, успешно преодолевая эти трудности. Дополнением к положительным качествам прибора становится высокий уровень передачи тепла, а также простота обслуживания и монтирования. К сожалению, такие приборы дорого оцениваются продавцами.

Кожухотрубный теплообменник

Кожухотрубный прибор состоит из нескольких частей: элементов, компенсирующих напряжение, пучков труб, патрубков, корпуса, крышки и трубных решёток. Особенностью кожухотрубного устройства считается изготовления их наклонными или горизонтальными/вертикальными.

Принцип работы на примере пластинчатого теплообменника

Этот теплообменник был выбран непросто. Он отличается довольно сложным принципом действия, а потому идеально освещает некоторые общие особенности каждого вида агрегата. Каждая из пластин устройства монтируется к другой части с поворотом равным 180 градусов. В стандартном составе прибора можно встретить до четырёх подобных элементов. В комплекте они создают пакеты, которые отвечают за коллекторный контур. Сам же контур функционирует для создания движения теплоносителя. Конструкция теплообменника подразумевает наличие двух крайних контуров. Именно они не участвуют в процессе создания тепла механизмом.

На сегодняшний день производители техники предлагают пользователю получить два различных вида комплектации.

  1. Одноходовой. Теплоноситель разделяется и создаёт параллельные потоки. Практически сразу же они стекают в выводной порт.
  2. Многоходовой. Этот вариант подразумевает использование сложной схемы. Теплообменник начинает своё движение по одинаковому количеству задействованных каналов. Такой принцип работы подразумевает наличие дополнительных элементов (пластин), которые заканчиваются заглушками в отводных портах. Эта особенность добавляет сложности в обслуживание подобных элементов.

Общие советы от специалистов

Теплообменники имеют сложную структуру, хотя в большинстве случаев советы по их использованию сводятся к одинаковым фразам. Конечно же, конструкция каждого из них уникальна, а потому примером выступает кожухотрубный теплообменник.

Вся сложность заключена в единственном правиле – как и любой прибор на планете, устройство теплообменника требует ремонта. Каждая процедура ремонта влечёт ряд второстепенных проблем, который специалисты стараются решить подручными средствами и способами. В этом механизме, как и в большинстве видов, присутствуют разные трубки. Именно они и являются самой частой причиной поломок. При проведении даже диагностики исправности этих элементов конструкции, следует чётко понимать – малейшее неверное действие и прибор может снизить уровень работы.

Все чаще встречаются люди и организации, которые покупают несколько теплообменников сразу. Эта особенность позволяет сразу же заменить повреждённое устройство новым.

Некоторые нюансы могут возникнуть и при регулировке агрегатов. Если неправильно ввести значения, то площадь работы теплообменника резко снизится. В этом случае происходит нелинейное изменение рабочей площади.

Главным советом специалистов становится отказ от самостоятельных действий по созданию любого вида теплообменника. Процесс рассчитан исключительно на производственный монтаж, а потому в домашних условиях его повторить невозможно.

Существует большое количество теплообменников. Одни из них дешевле, другие надёжнее, а третьи выдают лучший результат работы. Выбрать прибор сложно, но, возможно, зная основные их характеристики. Не стоит забывать и о правилах использования устройств, будь это кожухотрубные или пластинчатые изделия. Каждый вид работает исключительно с чёткими параметрами давления и условиями окружающей среды. Не стоит забывать и о советах специалистов, работающих с механизмами не первый год и знающих их особенности.

Источник: http://kotel.guru/truby/teploakkumulyatory/vidy-teploobmennikov-ih-ustroystvo-i-princip-raboty.html

Пластинчатый теплообменник: схема и принцип работы

Пластинчатые теплообменники представляют собой технические устройства, состоящие из тонких металлических штампованных пластин. С их помощью происходит передача тепловой энергии от горячего теплоносителя к нагреваемой среде. Приборы работают по одинаковому принципу, но отличаются по мощности, материалу изготовления, средней рабочей температуре и виду уплотнителя.

Устройство теплообменника

В устройстве пластинчатого теплообменника задействованы:

  • набор рельефных пластин— неподвижных и прижимных;
  • патрубки для входа и выхода теплоносителя;
  • плиты для стяжки;
  • стяжные болты.

Основными деталями являются пластины. Они нужны для переноса энергии от одного теплоносителя к другому. Их изготавливают штампованием из нержавеющей стали низкой пробы. Затем производят полировку электрохимическим способом. В итоге детали устойчивы к коррозии, могут работать при высокой температуре. На рисунке представлены пластины разных видов.

Читайте так же:  Справка от работодателя с указанием дохода

В схемах отражена конструкция теплообменника, которая зависит от модели устройства. Количество пластин с закрепленными прокладками для герметизации каналов может быть разным. На них приходится основная нагрузка при работе оборудования, так как детали крепления и рама являются элементами корпуса.

Пластины имеют гофрированную поверхность и рельефную окантовку. Это гарантирует надежное крепление при их сжатии, а также придает конструкции дополнительную жесткость. Подобное строение обеспечивает свободное перемещение жидкости по каналам.

  • в разборных аппаратах модуль с пластинами находится между прижимными и стационарными элементами, они крепко присоединены с помощью стержней;
  • пластины разделяют каучуковые или герметичные уплотнители;
  • уплотнители приклеены в специальные отверстия или закреплены шпильками;
  • если теплообменник паяный, его детали соединены припоем, обеспечивающим целостность прибора;
  • аппарат может быть установлен на пол или несущую конструкцию.

Схема и принцип работы пластинчатого теплообменника

Современные пластинчатые теплообменники эксплуатируются по особой системе. Отделы оборудования по очереди заполняются охлаждаемым и нагреваемым теплоносителем. Для того чтобы его удерживать или пропускать, применяют прокладки-уплотнители. Теплые и холодные массы перемещаются навстречу друг другу.

Пластины имеют высокую теплопередачу за счет эффективной конструкции. При их изготовлении используется специальная разработка «Офф-сет». Ее принцип заключается в создании каналов, располагающихся симметрично и ассиметрично. В результате жидкость распределяется равномерно, а теплоотбор увеличивается. Пластины могут быть двух видов.

  1. Жесткое рифление, нанесенное под углом 30 градусов. У таких изделий повышена теплопроводность, но при этом они не могут сдерживать высокого напора жидкости.
  2. Мягкое рифление под углом 60 градусов. Пластины имеют пониженную тепловую проводимость, но зато способны выдерживать высокий напор жидкости.

Изменяя пластины внутри теплообменника, можно найти оптимальные способы тепловой отдачи. При этом размер оборудования будет в несколько раз меньше, чем кожохотрубное устройство, но тепломеханические показатели у них одинаковы.

Для правильного подключения такого устройства, как пластинчатый теплообменник, требуется специальная схема:

  • F1 — подведение нагревающего теплоносителя;
  • F2 — отведение нагретой среды;
  • F4 — отведение нагревающего теплоносителя;
  • F3 — подведение охлажденной жидкости;
  • М — манометр;
  • Т — термометр;
  • КЗ — кран запорный;
  • ФМС — фильтр магнитно-сетчатый;
  • КР — клапан регулирующий;
  • ФЛ — фланец плоский.

Технические характеристики

Пластинчатые теплообменники могут использоваться для передачи энергии между жидкими и газообразными средами. Устройства применяют в сфере ЖКХ для подогрева воды и отопления многоквартирных домов, на промышленных объектах и электростанциях.

Основные технические характеристики теплообменников с пластинами:

  • давление при стандартных условиях работы от 2,5 до 4,0 МРа;
  • рабочая температура от -50 до +300 °С;
  • прокладки из тонкой листовой меди, Nitrile, Silicone;
  • пластины из нержавеющей стали.

Устройство имеет следующие преимущества:

  • КПД до 95 %;
  • при необходимости мощность устройства легко увеличивается простым добавлением пластин;
  • маленькие размеры по сравнению с оборудованием других типов;
  • удобство обслуживания — при загрязнении пластины легко очищаются от налета;
  • качественная полировка пластин предотвращает появление отложений на их поверхности;
  • срок эксплуатации до 25 лет;
  • невысокая стоимость ремонта;
  • монтировать пластинчатый теплообменник достаточно просто, если есть схема установки.

Материалы, используемые для изготовления

Материал для производства пластинчатого теплообменника должен иметь следующие качества:

  • устойчивость к химическому воздействию;
  • антикоррозийные свойства;
  • стойкость к высокой температуре.

Большинство низкотемпературных элементов для аппаратов изготавливают из малоуглеродистой стали. Для деталей, работающих при высоких температурах, используют жароустойчивую сталь. Она не окисляется при воздействии химических растворов и обладает повышенной прочностью.

Для отдельных узлов пластинчатого теплообменника применяют чугун и цветные металлы. Важно, чтобы материал обладал хорошими качествами для литья и не подвергался коррозии.

Для вентилей и задвижек применяют ковкий чугун, который имеет большую пластичность. Легированный чугун используют для производства деталей, устойчивых к растворам кислот и высокой температуре. Он не окисляется, не изменяет форму при нагреве до 1000 °С.

Цветные металлы и сплавы подходят для корпуса теплообменника. Они обладают высокой тепловой проводимостью и антикоррозийными качествами. Большое распространение получили:

  • латунь — сплав на основе меди с добавлением олова;
  • бронза — сплав меди, алюминия и цинка.

Для изготовления устройств также применяют неметаллические материалы: каучук, пластмассу, силикон. Они не подвержены агрессивному влиянию окружающей среды, поэтому их используют для производства прокладок и уплотнителей.

Керамические материалы имеют небольшой вес, не распадаются при высокой температуре и обладают хорошей прочностью. Их применяют в качестве теплоизоляционных элементов.

Виды теплообменников

  • Разборные пластинчатые теплообменники работают по принципу передачи тепла от горячей жидкости к нагреваемой среде через стальные гофрированные пластины. Они устанавливаются в раму и стягиваются в пакет. Движение жидкости происходит по встречным направлениям, а в местах возможной встречи нагретой и холодной сред находится резиновое уплотнение. Таким образом, исключается смешивание. Все пластины имеют одинаковую форму и размер. Основное преимущество данного вида оборудования в том, что для увеличения мощности достаточно просто добавить нужное количество пластин, для снижения — убрать лишние. Конструкция также дает возможность легко производить промывку деталей и текущий ремонт, поскольку разборка аппарата элементарна.
  • Пластинчатый паяный теплообменник относится к самоочищающимся приборам: схема основана на создании сильно турбулизированных потоков. Если применяется загрязненный теплоноситель, можно провести безразборную чистку оборудования с применением химических препаратов. Металл пластин позволяет использовать различные кислоты для промывки. Для соединения пластин между собой применяется метод твердого припоя. Это дает возможность исключить использование уплотняющих прокладок и прижимных плит, что сводит к минимуму риск протечек.
  • Сварные и полусварные теплообменники используют в системах холодоснабжения. Фреон, конденсатор или аммиак циркулирует внутри модулей, исключая утечку хладагента. В таком приборе пластины складываются попарно и свариваются с помощью лазера. В результате в конструкции отсутствуют материалы для уплотнения, увеличивается устойчивость к давлению, повышается срок эксплуатации оборудования.

Устройства могут отличаться по типу компоновки. При одноходовой жидкость разделяется на параллельные потоки, движется по каналам и сливается через специальный выход. Пластинчатый многоходовый теплообменник имеет глухие перегородки, поэтому его схема работы более сложная: теплоноситель циркулирует по каналам, совершая разворот.

Видео (кликните для воспроизведения).

Источник: http://www.pto-service.com/services/plastinchatyj-teploobmennik-shema/

Пластинчатый теплообменник устройство и принцип работы
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here